Ukraine

Academic Research

  • Journal Article

    Quantifying Narrative Similarity Across Languages

    • Quantifying Narrative Similarity Across Languages, 

    Sociological Methods & Research, 2025

    View Article View abstract

    How can one understand the spread of ideas across text data? This is a key measurement problem in sociological inquiry, from the study of how interest groups shape media discourse, to the spread of policy across institutions, to the diffusion of organizational structures and institution themselves. To study how ideas and narratives diffuse across text, we must first develop a method to identify whether texts share the same information and narratives, rather than the same broad themes or exact features. We propose a novel approach to measure this quantity of interest, which we call “narrative similarity,” by using large language models to distill texts to their core ideas and then compare the similarity of claims rather than of words, phrases, or sentences. The result is an estimand much closer to narrative similarity than what is possible with past relevant alternatives, including exact text reuse, which returns lexically similar documents; topic modeling, which returns topically similar documents; or an array of alternative approaches. We devise an approach to providing out-of-sample measures of performance (precision, recall, F1) and show that our approach outperforms relevant alternatives by a large margin. We apply our approach to an important case study: The spread of Russian claims about the development of a Ukrainian bioweapons program in U.S. mainstream and fringe news websites. While we focus on news in this application, our approach can be applied more broadly to the study of propaganda, misinformation, diffusion of policy and cultural objects, among other topics.

  • Journal Article

    How Social Media Facilitates Political Protest: Information, Motivation, and Social Networks

    Advances in Political Psychology, 2018

    View Article View abstract

    It is often claimed that social media platforms such as Facebook and Twitter are profoundly shaping political participation, especially when it comes to protest behavior. Whether or not this is the case, the analysis of “Big Data” generated by social media usage offers unprecedented opportunities to observe complex, dynamic effects associated with large-scale collective action and social movements. In this article, we summarize evidence from studies of protest movements in the United States, Spain, Turkey, and Ukraine demonstrating that: (1) Social media platforms facilitate the exchange of information that is vital to the coordination of protest activities, such as news about transportation, turnout, police presence, violence, medical services, and legal support; (2) in addition, social media platforms facilitate the exchange of emotional and motivational contents in support of and opposition to protest activity, including messages emphasizing anger, social identification, group efficacy, and concerns about fairness, justice, and deprivation as well as explicitly ideological themes; and (3) structural characteristics of online social networks, which may differ as a function of political ideology, have important implications for information exposure and the success or failure of organizational efforts. Next, we issue a brief call for future research on a topic that is understudied but fundamental to appreciating the role of social media in facilitating political participation, namely friendship. In closing, we liken the situation confronted by researchers who are harvesting vast quantities of social media data to that of systems biologists in the early days of genome sequencing.

    Date Posted

    Feb 13, 2018

View All Related Research

Reports & Analysis

View All Related Reports & Analysis

News & Commentary

View All Related News