Twitter

Academic Research

  • Journal Article

    Measuring Receptivity to Misinformation at Scale on a Social Media Platform

    PNAS Nexus, 2024

    View Article View abstract

    Measuring the impact of online misinformation is challenging. Traditional measures, such as user views or shares on social media, are incomplete because not everyone who is exposed to misinformation is equally likely to believe it. To address this issue, we developed a method that combines survey data with observational Twitter data to probabilistically estimate the number of users both exposed to and likely to believe a specific news story. As a proof of concept, we applied this method to 139 viral news articles and find that although false news reaches an audience with diverse political views, users who are both exposed and receptive to believing false news tend to have more extreme ideologies. These receptive users are also more likely to encounter misinformation earlier than those who are unlikely to believe it. This mismatch between overall user exposure and receptive user exposure underscores the limitation of relying solely on exposure or interaction data to measure the impact of misinformation, as well as the challenge of implementing effective interventions. To demonstrate how our approach can address this challenge, we then conducted data-driven simulations of common interventions used by social media platforms. We find that these interventions are only modestly effective at reducing exposure among users likely to believe misinformation, and their effectiveness quickly diminishes unless implemented soon after misinformation’s initial spread. Our paper provides a more precise estimate of misinformation’s impact by focusing on the exposure of users likely to believe it, offering insights for effective mitigation strategies on social media.

  • Working Paper

    Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scaling of Texts with Large Language Models

    Working Paper, October 2023

    View Article View abstract

    Existing text scaling methods often require a large corpus, struggle with short texts, or require labeled data. We develop a text scaling method that leverages the pattern recognition capabilities of generative large language models (LLMs). Specifically, we propose concept-guided chain-of-thought (CGCoT), which uses prompts designed to summarize ideas and identify target parties in texts to generate concept-specific breakdowns, in many ways similar to guidance for human coder content analysis. CGCoT effectively shifts pairwise text comparisons from a reasoning problem to a pattern recognition problem. We then pairwise compare concept-specific breakdowns using an LLM. We use the results of these pairwise comparisons to estimate a scale using the Bradley-Terry model. We use this approach to scale affective speech on Twitter. Our measures correlate more strongly with human judgments than alternative approaches like Wordfish. Besides a small set of pilot data to develop the CGCoT prompts, our measures require no additional labeled data and produce binary predictions comparable to a RoBERTa-Large model fine-tuned on thousands of human-labeled tweets. We demonstrate how combining substantive knowledge with LLMs can create state-of-the-art measures of abstract concepts.

    Date Posted

    Oct 18, 2023

View All Related Research

Reports & Analysis

View All Related Reports & Analysis

News & Commentary

View All Related News