Academic Research
CSMaP faculty, postdoctoral fellows, and students publish rigorous, peer-reviewed research in top academic journals and post working papers sharing ongoing work.
Search or Filter
- 
    Journal ArticleContent-Based Features Predict Social Media Influence OperationsScience Advances, 2020 
- 
    Journal ArticleCross-Platform State Propaganda: Russian Trolls on Twitter and YouTube During the 2016 U.S. Presidential ElectionThe International Journal of Press/Politics, 2020 This paper investigates online propaganda strategies of the Internet Research Agency (IRA)—Russian “trolls”—during the 2016 U.S. presidential election. We assess claims that the IRA sought either to (1) support Donald Trump or (2) sow discord among the U.S. public by analyzing hyperlinks contained in 108,781 IRA tweets. Our results show that although IRA accounts promoted links to both sides of the ideological spectrum, “conservative” trolls were more active than “liberal” ones. The IRA also shared content across social media platforms, particularly YouTube—the second-most linked destination among IRA tweets. Although overall news content shared by trolls leaned moderate to conservative, we find troll accounts on both sides of the ideological spectrum, and these accounts maintain their political alignment. Links to YouTube videos were decidedly conservative, however. While mixed, this evidence is consistent with the IRA’s supporting the Republican campaign, but the IRA’s strategy was multifaceted, with an ideological division of labor among accounts. We contextualize these results as consistent with a pre-propaganda strategy. This work demonstrates the need to view political communication in the context of the broader media ecology, as governments exploit the interconnected information ecosystem to pursue covert propaganda strategies. 
- 
    Journal ArticlePolitical Psycholinguistics: A Comprehensive Analysis of the Language Habits of Liberal and Conservative Social Media Users.Journal of Personality and Social Psychology, 2020 
- 
    Journal ArticleDon’t Republicans Tweet Too? Using Twitter to Assess the Consequences of Political Endorsements by CelebritiesPerspectives on Politics, 2020 Michael Jordan supposedly justified his decision to stay out of politics by noting that Republicans buy sneakers too. In the social media era, the name of the game for celebrities is engagement with fans. So why then do celebrities risk talking about politics on social media, which is likely to antagonize a portion of their fan base? With this question in mind, we analyze approximately 220,000 tweets from 83 celebrities who chose to endorse a presidential candidate in the 2016 U.S. presidential election campaign to assess whether there is a cost — defined in terms of engagement on Twitter — for celebrities who discuss presidential candidates. We also examine whether celebrities behave similarly to other campaign surrogates in being more likely to take on the “attack dog” role by going negative more often than going positive. More specifically, we document how often celebrities of distinct political preferences tweet about Donald Trump, Bernie Sanders, and Hillary Clinton, and we show that followers of opinionated celebrities do not withhold engagement when entertainers become politically mobilized and do indeed often go negative. Interestingly, in some cases political content from celebrities actually turns out to be more popular than typical lifestyle tweets. 
- 
    Journal ArticleWho Leads? Who Follows? Measuring Issue Attention and Agenda Setting by Legislators and the Mass Public Using Social Media DataAmerican Political Science Review, 2019 
- 
    Journal ArticleSocial Networks and Protest Participation: Evidence from 130 Million Twitter UsersAmerican Journal of Political Science, 2019 
- 
    Journal ArticleFor Whom the Bot Tolls: A Neural Networks Approach to Measuring Political Orientation of Twitter Bots in RussiaSAGE Open, 2019 Computational propaganda and the use of automated accounts in social media have recently become the focus of public attention, with alleged Russian government activities abroad provoking particularly widespread interest. However, even in the Russian domestic context, where anecdotal evidence of state activity online goes back almost a decade, no public systematic attempt has been made to dissect the population of Russian social media bots by their political orientation. We address this gap by developing a deep neural network classifier that separates pro-regime, anti-regime, and neutral Russian Twitter bots. Our method relies on supervised machine learning and a new large set of labeled accounts, rather than externally obtained account affiliations or orientation of elites. We also illustrate the use of our method by applying it to bots operating in Russian political Twitter from 2015 to 2017 and show that both pro- and anti-Kremlin bots had a substantial presence on Twitter. 
- 
    Journal Article
- 
    Journal ArticleDigital Dissent: An Analysis of the Motivational Contents of Tweets From an Occupy Wall Street DemonstrationMotivation Science, 2019 Social scientific models of protest activity emphasize instrumental motives associated with rational self-interest and beliefs about group efficacy and symbolic motives associated with social identification and anger at perceived injustice. Ideological processes are typically neglected, despite the fact that protest movements occur in a sociopolitical context in which some people are motivated to maintain the status quo, whereas others are motivated to challenge it. To investigate the role of ideology and other social psychological processes in protest participation, we used manual and machine-learning methods to analyze the contents of 23,810 tweets sent on the day of the May Day 2012 Occupy Wall Street demonstration along with an additional 664,937 tweets (sent by 8,244 unique users) during the 2-week lead-up to the demonstration. Results revealed that social identification and liberal ideology were significant independent predictors of protest participation. The effect of social identification was mediated by the expression of collective efficacy, justice concerns, ideological themes, and positive emotion. The effect of liberalism was mediated by the expression of ideological themes, but conservatives were more likely to express ideological backlash against Occupy Wall Street than liberals were to express ideological support for the movement or demonstration. The expression of self-interest and anger was either negatively related or unrelated to protest participation. This work illustrates the promise (and challenge) of using automated methods to analyze new, ecologically valid data sources for studying protest activity and its motivational underpinnings — thereby informing strategic campaigns that employ collective action tactics. 
- 
    Journal ArticleThe Use of Twitter Bots in Russian Political Communication OnlinePONARS Eurasia Policy Memo No. 564, 2019 
- 
    Journal ArticleHow Accurate Are Survey Responses on Social Media and Politics?Political Communication, 2019 
- 
    Journal ArticleTurning the Virtual Tables: Government Strategies for Addressing Online Opposition with an Application to RussiaComparative Politics, 2018 We introduce a novel classification of strategies employed by autocrats to combat online opposition generally, and opposition on social media in particular. Our classification distinguishes both online from offline responses and censorship from engaging in opinion formation. For each of the three options — offline action, technical restrictions on access to content, and online engagement — we provide a detailed account for the evolution of Russian government strategy since 2000. To illustrate the feasibility of researching online engagement, we construct and assess tools for detecting the activity of political "bots," or algorithmically controlled accounts, on Russian political Twitter, and test these methods on a large dataset of politically relevant Twitter data from Russia gathered over a year and a half. 
- 
    Journal ArticleElites Tweet to Get Feet Off the Streets: Measuring Regime Social Media Strategies During ProtestPolitical Science Research and Methods, 2019 
- 
    Journal ArticleHow Social Media Facilitates Political Protest: Information, Motivation, and Social NetworksAdvances in Political Psychology, 2018 
- 
    BookTwitter Wars: Sunni-Shia Conflict and Cooperation in the Digital AgeBeyond Sunni and Shia: The Roots of Sectarianism in a Changing Middle East, 2018 
- 
    Journal ArticleDetecting Bots on Russian Political TwitterBig Data, 2017 Automated and semiautomated Twitter accounts, bots, have recently gained significant public attention due to their potential interference in the political realm. In this study, we develop a methodology for detecting bots on Twitter using an ensemble of classifiers and apply it to study bot activity within political discussions in the Russian Twittersphere. We focus on the interval from February 2014 to December 2015, an especially consequential period in Russian politics. Among accounts actively Tweeting about Russian politics, we find that on the majority of days, the proportion of Tweets produced by bots exceeds 50%. We reveal bot characteristics that distinguish them from humans in this corpus, and find that the software platform used for Tweeting is among the best predictors of bots. Finally, we find suggestive evidence that one prominent activity that bots were involved in on Russian political Twitter is the spread of news stories and promotion of media who produce them. 
- 
    Journal ArticleMoral Discourse in the Twitterverse: Effects of Ideology and Political Sophistication on Language Use Among U.S. Citizens and Members of CongressJournal of Language and Politics, 2018 We analyzed Twitter language to explore hypotheses derived from moral foundations theory, which suggests that liberals and conservatives prioritize different values. In Study 1, we captured 11 million tweets from nearly 25,000 U.S. residents and observed that liberals expressed fairness concerns more often than conservatives, whereas conservatives were more likely to express concerns about group loyalty, authority, and purity. Increasing political sophistication exacerbated ideological differences in authority and group loyalty. At low levels of sophistication, liberals used more harm language, but at high levels of sophistication conservatives referenced harm more often. In Study 2, we analyzed 59,000 tweets from 388 members of the U.S. Congress. Liberal legislators used more fairness- and harm-related words, whereas conservative legislators used more authority-related words. Unexpectedly, liberal legislators used more language pertaining to group loyalty and purity. Follow-up analyses suggest that liberals and conservatives in Congress use similar words to emphasize different policy priorities. 
- 
    Journal ArticleThe Islamic State’s Information Warfare: Measuring the Success of ISIS’s Online StrategyJournal of Language and Politics, 2018 How successful is the Islamic State’s online strategy? To what extent does the organization achieve its goals of attracting a global audience, broadcasting its military successes, and marketing the Caliphate? Using Twitter and YouTube search data, we assess how suspected ISIS accounts, sympathizers, and opponents behave across two social media platforms, offering key insights into the successes and limitations of ISIS’ information warfare strategy. Analyzing the tweet content and metadata from 16,364 suspected ISIS accounts, we find that a core network of ISIS Twitter users are producing linguistically diverse narratives, touting battlefield victories and depicting utopian life in the Caliphate. Furthermore, a dataset of over 70 million tweets, as well as analysis of YouTube search data, indicates that although pro-ISIS content spreads globally and remains on message, it is far less prolific than anti-ISIS content. However, this anti-ISIS content is not necessarily anti-extremist or aligned with Western policy goals. 
- 
    BookMeasuring Public Opinion with Social Media DataThe Oxford Handbook of Polling and Survey Methods, 2018 
- 
    Journal ArticleEmotion Shapes the Diffusion of Moralized Content in Social NetworksProceedings of the National Academy of Sciences, 2017 
- 
    Journal ArticleSocial Media and EuroMaidan: A Review EssaySlavic Review, 2017 
- 
    Journal ArticleLiberal and Conservative Values: What We Can Learn from Congressional TweetsPolitical Psychology, 2018 Past research using self-report questionnaires administered to ordinary citizens demonstrates that value priorities differ as a function of one's political ideology, but it is unclear whether this conclusion applies to political elites, who are presumably seeking to appeal to very broad constituencies. We used quantitative methods of textual analysis to investigate value-laden language in a collection of 577,555 messages sent from the public Twitter accounts of over 400 members of the U.S. Congress between 2012 and 2014. Consistent with theoretical expectations, we observed that Republican and conservative legislators stressed values of tradition, conformity, and national security (as well as self-direction), whereas Democratic and liberal legislators stressed values of benevolence, universalism, hedonism, and social/economic security (as well as achievement). Implications for the large-scale observational study of political psychology are explored. 
- 
    Journal ArticleTweetment Effects on the Tweeted: Experimentally Reducing Racist HarassmentPolitical Behavior, 2017 I conduct an experiment which examines the impact of group norm promotion and social sanctioning on racist online harassment. Racist online harassment de-mobilizes the minorities it targets, and the open, unopposed expression of racism in a public forum can legitimize racist viewpoints and prime ethnocentrism. I employ an intervention designed to reduce the use of anti-black racist slurs by white men on Twitter. I collect a sample of Twitter users who have harassed other users and use accounts I control (“bots”) to sanction the harassers. By varying the identity of the bots between in-group (white man) and out-group (black man) and by varying the number of Twitter followers each bot has, I find that subjects who were sanctioned by a high-follower white male significantly reduced their use of a racist slur. This paper extends findings from lab experiments to a naturalistic setting using an objective, behavioral outcome measure and a continuous 2-month data collection period. This represents an advance in the study of prejudiced behavior. 
- 
    Journal ArticleOf Echo Chambers and Contrarian Clubs: Exposure to Political Disagreement Among German and Italian Users of TwitterSocial Media and Society, 2016 Scholars have debated whether social media platforms, by allowing users to select the information to which they are exposed, may lead people to isolate themselves from viewpoints with which they disagree, thereby serving as political “echo chambers.” We investigate hypotheses concerning the circumstances under which Twitter users who communicate about elections would engage with (a) supportive, (b) oppositional, and (c) mixed political networks. Based on online surveys of representative samples of Italian and German individuals who posted at least one Twitter message about elections in 2013, we find substantial differences in the extent to which social media facilitates exposure to similar versus dissimilar political views. Our results suggest that exposure to supportive, oppositional, or mixed political networks on social media can be explained by broader patterns of political conversation (i.e., structure of offline networks) and specific habits in the political use of social media (i.e., the intensity of political discussion). These findings suggest that disagreement persists on social media even when ideological homophily is the modal outcome, and that scholars should pay more attention to specific situational and dispositional factors when evaluating the implications of social media for political communication. 
- 
    BookBig Data, Social Media, and Protest: Foundations for a Research AgendaComputational Social Science: Discovery and Prediction, 2016 
Pinning down the role of social ties in the decision to protest has been notoriously elusive largely due to data limitations. Social media and their global use by protesters offer an unprecedented opportunity to observe real-time social ties and online behavior, though often without an attendant measure of real-world behavior. We collect data on Twitter activity during the 2015 Charlie Hebdo protest in Paris, which, unusually, record real-world protest attendance and network structure measured beyond egocentric networks. We devise a test of social theories of protest that hold that participation depends on exposure to others' intentions and network position determines exposure. Our findings are strongly consistent with these theories, showing that protesters are significantly more connected to one another via direct, indirect, triadic, and reciprocated ties than comparable nonprotesters. These results offer the first large-scale empirical support for the claim that social network structure has consequences for protest participation.