Academic Research

CSMaP faculty, postdoctoral fellows, and students publish rigorous, peer-reviewed research in top academic journals and post working papers sharing ongoing work.

Search or Filter

  • Journal Article

    Who Leads? Who Follows? Measuring Issue Attention and Agenda Setting by Legislators and the Mass Public Using Social Media Data

    American Political Science Review, 2019

    View Article View abstract

    Are legislators responsive to the priorities of the public? Research demonstrates a strong correspondence between the issues about which the public cares and the issues addressed by politicians, but conclusive evidence about who leads whom in setting the political agenda has yet to be uncovered. We answer this question with fine-grained temporal analyses of Twitter messages by legislators and the public during the 113th U.S. Congress. After employing an unsupervised method that classifies tweets sent by legislators and citizens into topics, we use vector autoregression models to explore whose priorities more strongly predict the relationship between citizens and politicians. We find that legislators are more likely to follow, than to lead, discussion of public issues, results that hold even after controlling for the agenda-setting effects of the media. We also find, however, that legislators are more likely to be responsive to their supporters than to the general public.

    Date Posted

    Jul 12, 2019

  • Journal Article

    Social Networks and Protest Participation: Evidence from 130 Million Twitter Users

    American Journal of Political Science, 2019

    View Article View abstract

    Pinning down the role of social ties in the decision to protest has been notoriously elusive largely due to data limitations. Social media and their global use by protesters offer an unprecedented opportunity to observe real-time social ties and online behavior, though often without an attendant measure of real-world behavior. We collect data on Twitter activity during the 2015 Charlie Hebdo protest in Paris, which, unusually, record real-world protest attendance and network structure measured beyond egocentric networks. We devise a test of social theories of protest that hold that participation depends on exposure to others' intentions and network position determines exposure. Our findings are strongly consistent with these theories, showing that protesters are significantly more connected to one another via direct, indirect, triadic, and reciprocated ties than comparable nonprotesters. These results offer the first large-scale empirical support for the claim that social network structure has consequences for protest participation.

    Date Posted

    Jul 01, 2019

    Tags

  • Journal Article

    For Whom the Bot Tolls: A Neural Networks Approach to Measuring Political Orientation of Twitter Bots in Russia

    SAGE Open, 2019

    View Article View abstract

    Computational propaganda and the use of automated accounts in social media have recently become the focus of public attention, with alleged Russian government activities abroad provoking particularly widespread interest. However, even in the Russian domestic context, where anecdotal evidence of state activity online goes back almost a decade, no public systematic attempt has been made to dissect the population of Russian social media bots by their political orientation. We address this gap by developing a deep neural network classifier that separates pro-regime, anti-regime, and neutral Russian Twitter bots. Our method relies on supervised machine learning and a new large set of labeled accounts, rather than externally obtained account affiliations or orientation of elites. We also illustrate the use of our method by applying it to bots operating in Russian political Twitter from 2015 to 2017 and show that both pro- and anti-Kremlin bots had a substantial presence on Twitter.

    Date Posted

    Apr 12, 2019

    Tags

  • Journal Article

    How Many People Live in Political Bubbles on Social Media? Evidence From Linked Survey and Twitter Data

    SAGE Open, 2019

    View Article View abstract

    A major point of debate in the study of the Internet and politics is the extent to which social media platforms encourage citizens to inhabit online “bubbles” or “echo chambers,” exposed primarily to ideologically congenial political information. To investigate this question, we link a representative survey of Americans with data from respondents’ public Twitter accounts (N = 1,496). We then quantify the ideological distributions of users’ online political and media environments by merging validated estimates of user ideology with the full set of accounts followed by our survey respondents (N = 642,345) and the available tweets posted by those accounts (N ~ 1.2 billion). We study the extent to which liberals and conservatives encounter counter-attitudinal messages in two distinct ways: (a) by the accounts they follow and (b) by the tweets they receive from those accounts, either directly or indirectly (via retweets). More than a third of respondents do not follow any media sources, but among those who do, we find a substantial amount of overlap (51%) in the ideological distributions of accounts followed by users on opposite ends of the political spectrum. At the same time, however, we find asymmetries in individuals’ willingness to venture into cross-cutting spaces, with conservatives more likely to follow media and political accounts classified as left-leaning than the reverse. Finally, we argue that such choices are likely tempered by online news watching behavior.

    Area of Study

    Date Posted

    Feb 28, 2019

  • Journal Article

    Digital Dissent: An Analysis of the Motivational Contents of Tweets From an Occupy Wall Street Demonstration

    Motivation Science, 2019

    View Article View abstract

    Social scientific models of protest activity emphasize instrumental motives associated with rational self-interest and beliefs about group efficacy and symbolic motives associated with social identification and anger at perceived injustice. Ideological processes are typically neglected, despite the fact that protest movements occur in a sociopolitical context in which some people are motivated to maintain the status quo, whereas others are motivated to challenge it. To investigate the role of ideology and other social psychological processes in protest participation, we used manual and machine-learning methods to analyze the contents of 23,810 tweets sent on the day of the May Day 2012 Occupy Wall Street demonstration along with an additional 664,937 tweets (sent by 8,244 unique users) during the 2-week lead-up to the demonstration. Results revealed that social identification and liberal ideology were significant independent predictors of protest participation. The effect of social identification was mediated by the expression of collective efficacy, justice concerns, ideological themes, and positive emotion. The effect of liberalism was mediated by the expression of ideological themes, but conservatives were more likely to express ideological backlash against Occupy Wall Street than liberals were to express ideological support for the movement or demonstration. The expression of self-interest and anger was either negatively related or unrelated to protest participation. This work illustrates the promise (and challenge) of using automated methods to analyze new, ecologically valid data sources for studying protest activity and its motivational underpinnings — thereby informing strategic campaigns that employ collective action tactics. 

    Date Posted

    Feb 27, 2019

  • Journal Article
  • Journal Article

    How Accurate Are Survey Responses on Social Media and Politics?

    Political Communication, 2019

    View Article View abstract

    How accurate are survey-based measures of social media use, in particular about political topics? We answer this question by linking original survey data collected during the U.S. 2016 election campaign with respondents’ observed social media activity. We use supervised machine learning to classify whether these Twitter and Facebook account data are content related to politics. We then benchmark our survey measures on frequency of posting about politics and the number of political figures followed. We find that, on average, our self-reported survey measures tend to correlate with observed social media activity. At the same time, we also find a worrying amount of individual-level discrepancy and problems related to extreme outliers. Our recommendations are twofold. The first is for survey questions about social media use to provide respondents with options covering a wider range of activity, especially in the long tail. The second is for survey questions to include specific content and anchors defining what it means for a post to be “about politics.”

    Area of Study

    Date Posted

    Nov 05, 2018

  • Journal Article

    Turning the Virtual Tables: Government Strategies for Addressing Online Opposition with an Application to Russia

    Comparative Politics, 2018

    View Article View abstract

    We introduce a novel classification of strategies employed by autocrats to combat online opposition generally, and opposition on social media in particular. Our classification distinguishes both online from offline responses and censorship from engaging in opinion formation. For each of the three options — offline action, technical restrictions on access to content, and online engagement — we provide a detailed account for the evolution of Russian government strategy since 2000. To illustrate the feasibility of researching online engagement, we construct and assess tools for detecting the activity of political "bots," or algorithmically controlled accounts, on Russian political Twitter, and test these methods on a large dataset of politically relevant Twitter data from Russia gathered over a year and a half.

    Date Posted

    Apr 01, 2018

    Tags

  • Journal Article

    Elites Tweet to Get Feet Off the Streets: Measuring Regime Social Media Strategies During Protest

    Political Science Research and Methods, 2019

    View Article View abstract

    As non-democratic regimes have adapted to the proliferation of social media, they have begun actively engaging with Twitter to enhance regime resilience. Using data taken from the Twitter accounts of Venezuelan legislators during the 2014 anti-Maduro protests in Venezuela, we fit a topic model on the text of the tweets and analyze patterns in hashtag use by the two coalitions. We argue that the regime’s best strategy in the face of an existential threat like the narrative developed by La Salida and promoted on Twitter was to advance many competing narratives that addressed issues unrelated to the opposition’s criticism. Our results show that the two coalitions pursued different rhetorical strategies in keeping with our predictions about managing the conflict advanced by the protesters. This article extends the literature on social media use during protests by focusing on active engagement with social media on the part of the regime. This approach corroborates and expands on recent research on inferring regime strategies from propaganda and censorship.

    Date Posted

    Mar 21, 2018

    Tags

  • Journal Article

    How Social Media Facilitates Political Protest: Information, Motivation, and Social Networks

    Advances in Political Psychology, 2018

    View Article View abstract

    It is often claimed that social media platforms such as Facebook and Twitter are profoundly shaping political participation, especially when it comes to protest behavior. Whether or not this is the case, the analysis of “Big Data” generated by social media usage offers unprecedented opportunities to observe complex, dynamic effects associated with large-scale collective action and social movements. In this article, we summarize evidence from studies of protest movements in the United States, Spain, Turkey, and Ukraine demonstrating that: (1) Social media platforms facilitate the exchange of information that is vital to the coordination of protest activities, such as news about transportation, turnout, police presence, violence, medical services, and legal support; (2) in addition, social media platforms facilitate the exchange of emotional and motivational contents in support of and opposition to protest activity, including messages emphasizing anger, social identification, group efficacy, and concerns about fairness, justice, and deprivation as well as explicitly ideological themes; and (3) structural characteristics of online social networks, which may differ as a function of political ideology, have important implications for information exposure and the success or failure of organizational efforts. Next, we issue a brief call for future research on a topic that is understudied but fundamental to appreciating the role of social media in facilitating political participation, namely friendship. In closing, we liken the situation confronted by researchers who are harvesting vast quantities of social media data to that of systems biologists in the early days of genome sequencing.

    Date Posted

    Feb 13, 2018

  • Book

    Twitter Wars: Sunni-Shia Conflict and Cooperation in the Digital Age

    Beyond Sunni and Shia: The Roots of Sectarianism in a Changing Middle East, 2018

    View Book

    Date Posted

    Feb 01, 2018

  • Journal Article

    Detecting Bots on Russian Political Twitter

    Big Data, 2017

    View Article View abstract

    Automated and semiautomated Twitter accounts, bots, have recently gained significant public attention due to their potential interference in the political realm. In this study, we develop a methodology for detecting bots on Twitter using an ensemble of classifiers and apply it to study bot activity within political discussions in the Russian Twittersphere. We focus on the interval from February 2014 to December 2015, an especially consequential period in Russian politics. Among accounts actively Tweeting about Russian politics, we find that on the majority of days, the proportion of Tweets produced by bots exceeds 50%. We reveal bot characteristics that distinguish them from humans in this corpus, and find that the software platform used for Tweeting is among the best predictors of bots. Finally, we find suggestive evidence that one prominent activity that bots were involved in on Russian political Twitter is the spread of news stories and promotion of media who produce them.

    Date Posted

    Dec 01, 2017

    Tags

  • Journal Article

    Moral Discourse in the Twitterverse: Effects of Ideology and Political Sophistication on Language Use Among U.S. Citizens and Members of Congress

    Journal of Language and Politics, 2018

    View Article View abstract

    We analyzed Twitter language to explore hypotheses derived from moral foundations theory, which suggests that liberals and conservatives prioritize different values. In Study 1, we captured 11 million tweets from nearly 25,000 U.S. residents and observed that liberals expressed fairness concerns more often than conservatives, whereas conservatives were more likely to express concerns about group loyalty, authority, and purity. Increasing political sophistication exacerbated ideological differences in authority and group loyalty. At low levels of sophistication, liberals used more harm language, but at high levels of sophistication conservatives referenced harm more often. In Study 2, we analyzed 59,000 tweets from 388 members of the U.S. Congress. Liberal legislators used more fairness- and harm-related words, whereas conservative legislators used more authority-related words. Unexpectedly, liberal legislators used more language pertaining to group loyalty and purity. Follow-up analyses suggest that liberals and conservatives in Congress use similar words to emphasize different policy priorities.

  • Journal Article

    The Islamic State’s Information Warfare: Measuring the Success of ISIS’s Online Strategy

    Journal of Language and Politics, 2018

    View Article View abstract

    How successful is the Islamic State’s online strategy? To what extent does the organization achieve its goals of attracting a global audience, broadcasting its military successes, and marketing the Caliphate? Using Twitter and YouTube search data, we assess how suspected ISIS accounts, sympathizers, and opponents behave across two social media platforms, offering key insights into the successes and limitations of ISIS’ information warfare strategy. Analyzing the tweet content and metadata from 16,364 suspected ISIS accounts, we find that a core network of ISIS Twitter users are producing linguistically diverse narratives, touting battlefield victories and depicting utopian life in the Caliphate. Furthermore, a dataset of over 70 million tweets, as well as analysis of YouTube search data, indicates that although pro-ISIS content spreads globally and remains on message, it is far less prolific than anti-ISIS content. However, this anti-ISIS content is not necessarily anti-extremist or aligned with Western policy goals.

    Date Posted

    Oct 18, 2017

    Tags

  • Book

    Measuring Public Opinion with Social Media Data

    The Oxford Handbook of Polling and Survey Methods, 2018

    View Book View abstract

    This chapter examines the use of social networking sites such as Twitter in measuring public opinion. It first considers the opportunities and challenges that are involved in conducting public opinion surveys using social media data. Three challenges are discussed: identifying political opinion, representativeness of social media users, and aggregating from individual responses to public opinion. The chapter outlines some of the strategies for overcoming these challenges and proceeds by highlighting some of the novel uses for social media that have fewer direct analogs in traditional survey work. Finally, it suggests new directions for a research agenda in using social media for public opinion work.

    Date Posted

    Oct 01, 2017

  • Journal Article

    Emotion Shapes the Diffusion of Moralized Content in Social Networks

    Proceedings of the National Academy of Sciences, 2017

    View Article View abstract

    Political debate concerning moralized issues is increasingly common in online social networks. However, moral psychology has yet to incorporate the study of social networks to investigate processes by which some moral ideas spread more rapidly or broadly than others. Here, we show that the expression of moral emotion is key for the spread of moral and political ideas in online social networks, a process we call “moral contagion.” Using a large sample of social media communications about three polarizing moral/political issues (n = 563,312), we observed that the presence of moral-emotional words in messages increased their diffusion by a factor of 20% for each additional word. Furthermore, we found that moral contagion was bounded by group membership; moral-emotional language increased diffusion more strongly within liberal and conservative networks, and less between them. Our results highlight the importance of emotion in the social transmission of moral ideas and also demonstrate the utility of social network methods for studying morality. These findings offer insights into how people are exposed to moral and political ideas through social networks, thus expanding models of social influence and group polarization as people become increasingly immersed in social media networks.

    Area of Study

    Date Posted

    Jul 11, 2017

  • Journal Article

    Social Media and EuroMaidan: A Review Essay

    Slavic Review, 2017

    View Article View abstract

    As more than a billion people had done previously, on November 21, 2013, Ukrainian journalist and activist Mustafa Nayem wrote a Facebook post; this post, however, would have a much larger impact on subsequent political developments than most that had preceded it. Frustrated with President Viktor Yanukovych’s decision not to sign a long-promised association agreement with the European Union, Nayem asked others who shared his frustration to comment on his post. Even more importantly, Nayem wrote that if the post received at least 1,000 comments from people willing to join him, they should all go to Independence Square to protest. And indeed they did: starting with just a few thousand people, the protests would swell to be the largest since Ukraine’s independence, particularly after police used force against protesters at the end of November 2013. Eventually, these protests led to the resignation of the government, the exile of the former president, and indirectly to the secession of Crimea and the ongoing conflict in the eastern part of the country.

    Date Posted

    May 02, 2017

    Tags

  • Journal Article

    Liberal and Conservative Values: What We Can Learn from Congressional Tweets

    Political Psychology, 2018

    View Article View abstract

    Past research using self-report questionnaires administered to ordinary citizens demonstrates that value priorities differ as a function of one's political ideology, but it is unclear whether this conclusion applies to political elites, who are presumably seeking to appeal to very broad constituencies. We used quantitative methods of textual analysis to investigate value-laden language in a collection of 577,555 messages sent from the public Twitter accounts of over 400 members of the U.S. Congress between 2012 and 2014. Consistent with theoretical expectations, we observed that Republican and conservative legislators stressed values of tradition, conformity, and national security (as well as self-direction), whereas Democratic and liberal legislators stressed values of benevolence, universalism, hedonism, and social/economic security (as well as achievement). Implications for the large-scale observational study of political psychology are explored.

    Date Posted

    Mar 29, 2017

  • Journal Article

    Tweetment Effects on the Tweeted: Experimentally Reducing Racist Harassment

    Political Behavior, 2017

    View Article View abstract

    I conduct an experiment which examines the impact of group norm promotion and social sanctioning on racist online harassment. Racist online harassment de-mobilizes the minorities it targets, and the open, unopposed expression of racism in a public forum can legitimize racist viewpoints and prime ethnocentrism. I employ an intervention designed to reduce the use of anti-black racist slurs by white men on Twitter. I collect a sample of Twitter users who have harassed other users and use accounts I control (“bots”) to sanction the harassers. By varying the identity of the bots between in-group (white man) and out-group (black man) and by varying the number of Twitter followers each bot has, I find that subjects who were sanctioned by a high-follower white male significantly reduced their use of a racist slur. This paper extends findings from lab experiments to a naturalistic setting using an objective, behavioral outcome measure and a continuous 2-month data collection period. This represents an advance in the study of prejudiced behavior.

    Date Posted

    Nov 11, 2016

  • Journal Article

    Of Echo Chambers and Contrarian Clubs: Exposure to Political Disagreement Among German and Italian Users of Twitter

    Social Media and Society, 2016

    View Article View abstract

    Scholars have debated whether social media platforms, by allowing users to select the information to which they are exposed, may lead people to isolate themselves from viewpoints with which they disagree, thereby serving as political “echo chambers.” We investigate hypotheses concerning the circumstances under which Twitter users who communicate about elections would engage with (a) supportive, (b) oppositional, and (c) mixed political networks. Based on online surveys of representative samples of Italian and German individuals who posted at least one Twitter message about elections in 2013, we find substantial differences in the extent to which social media facilitates exposure to similar versus dissimilar political views. Our results suggest that exposure to supportive, oppositional, or mixed political networks on social media can be explained by broader patterns of political conversation (i.e., structure of offline networks) and specific habits in the political use of social media (i.e., the intensity of political discussion). These findings suggest that disagreement persists on social media even when ideological homophily is the modal outcome, and that scholars should pay more attention to specific situational and dispositional factors when evaluating the implications of social media for political communication.

    Area of Study

    Date Posted

    Jul 01, 2016

    Tags

  • Book

    Date Posted

    Mar 05, 2016

    Tags

  • Journal Article

    Tweeting Identity? Ukrainian, Russian and #EuroMaidan

    Journal of Comparative Economics, 2016

    View Article View abstract

    Why and when do group identities become salient? Existing scholarship has suggested that insecurity and competition over political and economic resources as well as increased perceptions of threat from the out-group tend to increase the salience of ethnic identities. Most of the work on ethnicity, however, is either experimental and deals with how people respond once identity has already been primed, is based on self-reported measures of identity, or driven by election results. In contrast, here we examine events in Ukraine from late 2013 (the beginning of the Euromaidan protests) through the end of 2014 to see if particular moments of heightened political tension led to increased identification as either “Russian” or “Ukrainian” among Ukrainian citizens. In tackling this question, we use a novel methodological approach by testing the hypothesis that those who prefer to use Ukrainian to communicate on Twitter will use Ukrainian (at the expense of Russian) following moments of heightened political awareness and those who prefer to use Russian will do the opposite. Interestingly, our primary finding is a negative result: we do not find evidence that key political events in the Ukrainian crisis led to a reversion to the language of choice at the aggregate level, which is interesting given how much ink has been spilt on the question of the extent to which Euromaidan reflected an underlying Ukrainian vs. Russian conflict. However, we unexpectedly find that both those who prefer Russian and those who prefer Ukrainian begin using Russian with a greater frequency following the annexation of Crimea, thus contributing a whole new set of puzzles – and a method for exploring these puzzles – that can serve as a basis for future research.

    Area of Study

    Date Posted

    Dec 21, 2015

    Tags

  • Journal Article

    Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using Twitter Data

    Political Analysis, 2015

    View Article View abstract

    Politicians and citizens increasingly engage in political conversations on social media outlets such as Twitter. In this article, I show that the structure of the social networks in which they are embedded can be a source of information about their ideological positions. Under the assumption that social networks are homophilic, I develop a Bayesian Spatial Following model that considers ideology as a latent variable, whose value can be inferred by examining which politics actors each user is following. This method allows us to estimate ideology for more actors than any existing alternative, at any point in time and across many polities. I apply this method to estimate ideal points for a large sample of both elite and mass public Twitter users in the United States and five European countries. The estimated positions of legislators and political parties replicate conventional measures of ideology. The method is also able to successfully classify individuals who state their political preferences publicly and a sample of users matched with their party registration records. To illustrate the potential contribution of these estimates, I examine the extent to which online behavior during the 2012 U.S. presidential election campaign is clustered along ideological lines.

  • Journal Article

    The Critical Periphery in the Growth of Social Protests

    PLOS ONE, 2015

    View Article View abstract

    Social media have provided instrumental means of communication in many recent political protests. The efficiency of online networks in disseminating timely information has been praised by many commentators; at the same time, users are often derided as “slacktivists” because of the shallow commitment involved in clicking a forwarding button. Here we consider the role of these peripheral online participants, the immense majority of users who surround the small epicenter of protests, representing layers of diminishing online activity around the committed minority. We analyze three datasets tracking protest communication in different languages and political contexts through the social media platform Twitter and employ a network decomposition technique to examine their hierarchical structure. We provide consistent evidence that peripheral participants are critical in increasing the reach of protest messages and generating online content at levels that are comparable to core participants. Although committed minorities may constitute the heart of protest movements, our results suggest that their success in maximizing the number of online citizens exposed to protest messages depends, at least in part, on activating the critical periphery. Peripheral users are less active on a per capita basis, but their power lies in their numbers: their aggregate contribution to the spread of protest messages is comparable in magnitude to that of core participants. An analysis of two other datasets unrelated to mass protests strengthens our interpretation that core-periphery dynamics are characteristically important in the context of collective action events. Theoretical models of diffusion in social networks would benefit from increased attention to the role of peripheral nodes in the propagation of information and behavior.

    Date Posted

    Nov 30, 2015

    Tags

  • Journal Article

    Tweeting From Left to Right: Is Online Political Communication More Than an Echo Chamber?

    Psychological Science, 2015

    View Article View abstract

    We estimated ideological preferences of 3.8 million Twitter users and, using a data set of nearly 150 million tweets concerning 12 political and nonpolitical issues, explored whether online communication resembles an “echo chamber” (as a result of selective exposure and ideological segregation) or a “national conversation.” We observed that information was exchanged primarily among individuals with similar ideological preferences in the case of political issues (e.g., 2012 presidential election, 2013 government shutdown) but not many other current events (e.g., 2013 Boston Marathon bombing, 2014 Super Bowl). Discussion of the Newtown shootings in 2012 reflected a dynamic process, beginning as a national conversation before transforming into a polarized exchange. With respect to both political and nonpolitical issues, liberals were more likely than conservatives to engage in cross-ideological dissemination; this is an important asymmetry with respect to the structure of communication that is consistent with psychological theory and research bearing on ideological differences in epistemic, existential, and relational motivation. Overall, we conclude that previous work may have overestimated the degree of ideological segregation in social-media usage.

    Date Posted

    Aug 21, 2015