Academic Research

CSMaP faculty, postdoctoral fellows, and students publish rigorous, peer-reviewed research in top academic journals and post working papers sharing ongoing work.

Search or Filter

  • Working Paper

    Survey Professionalism: New Evidence from Web Browsing Data

    Working Paper, August 2024

    View Article View abstract

    Online panels have become an important resource for research in political science, but the financial compensation involved incentivizes respondents to become “survey professionals”, which raises concerns about data quality. We provide evidence on survey professionalism using behavioral web browsing data from three U.S. samples, recruited via Lucid, YouGov, and Facebook (total n = 3,886). Survey professionalism is common but varies across samples: By our most conservative measure, we identify 1.7% of respondents on Facebook, 7.9% of respondents on YouGov, and 34.3% of respondents on Lucid as survey professionals. However, evidence that professionals lower data quality is limited: they do not systematically differ demographically or politically from non-professionals and do not respond more randomly—although they are somewhat more likely to speed, to straightline, and to take questionnaires repeatedly. While concerns are warranted, we conclude that survey professionals do not, by and large, distort inferences of research based on online panels.

    Date Posted

    Aug 30, 2024

  • Working Paper

    Reaching Across the Political Aisle: Overcoming Challenges in Using Social Media for Recruiting Politically Diverse Respondents

    Working Paper, August 2024

    View Article View abstract

    A challenge for public opinion surveys is achieving representativeness of respondents across demographic groups. We test the extent to which ideological alignment with a survey’s sponsor shapes differential partisan response and users’ choice of whether to participate in a research study on Facebook. While the use of Facebook advertisements for recruitment has increased in recent years and offers potential benefits, it can yield difficulties in recruiting politically representative samples. We recruit respondents for a short survey through two otherwise identical advertisements associated with either New York University (from a liberal state) or the University of Mississippi (from a conservative state). Contrary to our expectations, we don’t find an asymmetry in completion rates between self-reported Democrats and Republicans based on the survey sponsor. Nor do we find statistically significant differences in attitudes of respondents across the two survey sponsors when we control for observables.

    Date Posted

    Aug 13, 2024

  • Journal Article

    Digital Town Square? Nextdoor's Offline Contexts and Online Discourse

    Journal of Quantitative Description: Digital Media, 2024

    View Article View abstract

    There is scant quantitative research describing Nextdoor, the world's largest and most important hyperlocal social media network. Due to its localized structure, Nextdoor data are notoriously difficult to collect and work with. We build multiple datasets that allow us to generate descriptive analyses of the platform's offline contexts and online content. We first create a comprehensive dataset of all Nextdoor neighborhoods joined with U.S. Census data, which we analyze at the community-level (block-group). Our findings suggests that Nextdoor is primarily used in communities where the populations are whiter, more educated, more likely to own a home, and with higher levels of average income, potentially impacting the platform's ability to create new opportunities for social capital formation and citizen engagement. At the same time, Nextdoor neighborhoods are more likely to have active government agency accounts---and law enforcement agencies in particular---where offline communities are more urban, have larger nonwhite populations, greater income inequality, and higher average home values. We then build a convenience sample of 30 Nextdoor neighborhoods, for which we collect daily posts and comments appearing in the feed (115,716 posts and 163,903 comments), as well as associated metadata. Among the accounts for which we collected posts and comments, posts seeking or offering services were the most frequent, while those reporting potentially suspicious people or activities received the highest average number of comments. Taken together, our study describes the ecosystem of and discussion on Nextdoor, as well as introduces data for quantitatively studying the platform.

    Date Posted

    May 29, 2024

  • Book

    Online Data and the Insurrection

    Media and January 6th, 2024

    View Book View abstract

    Online data is key to understanding the leadup to the January 6 insurrection, including how and why election fraud conspiracies spread online, how conspiracy groups organized online to participate in the insurrection, and other factors of online life that led to the insurrection. However, there are significant challenges in accessing data for this research. First, platforms restrict which researchers get access to data, as well as what researchers can do with the data they access. Second, this data is ephemeral; that is, once users or the platform remove the data, researchers can no longer access it. These factors affect what research questions can ever be asked and answered.

  • Journal Article

    Estimating the Ideology of Political YouTube Videos

    Political Analysis, 2024

    View Article View abstract

    We present a method for estimating the ideology of political YouTube videos. As online media increasingly influences how people engage with politics, so does the importance of quantifying the ideology of such media for research. The subfield of estimating ideology as a latent variable has often focused on traditional actors such as legislators, while more recent work has used social media data to estimate the ideology of ordinary users, political elites, and media sources. We build on this work by developing a method to estimate the ideologies of YouTube videos, an important subset of media, based on their accompanying text metadata. First, we take Reddit posts linking to YouTube videos and use correspondence analysis to place those videos in an ideological space. We then train a text-based model with those estimated ideologies as training labels, enabling us to estimate the ideologies of videos not posted on Reddit. These predicted ideologies are then validated against human labels. Finally, we demonstrate the utility of this method by applying it to the watch histories of survey respondents with self-identified ideologies to evaluate the prevalence of echo chambers on YouTube. Our approach gives video-level scores based only on supplied text metadata, is scalable, and can be easily adjusted to account for changes in the ideological climate. This method could also be generalized to estimate the ideology of other items referenced or posted on Reddit.

    Date Posted

    Feb 13, 2024

  • Journal Article

    Online Searches to Evaluate Misinformation Can Increase its Perceived Veracity

    Nature, 2024

    View Article View abstract

    Considerable scholarly attention has been paid to understanding belief in online misinformation, with a particular focus on social networks. However, the dominant role of search engines in the information environment remains underexplored, even though the use of online search to evaluate the veracity of information is a central component of media literacy interventions. Although conventional wisdom suggests that searching online when evaluating misinformation would reduce belief in it, there is little empirical evidence to evaluate this claim. Here, across five experiments, we present consistent evidence that online search to evaluate the truthfulness of false news articles actually increases the probability of believing them. To shed light on this relationship, we combine survey data with digital trace data collected using a custom browser extension. We find that the search effect is concentrated among individuals for whom search engines return lower-quality information. Our results indicate that those who search online to evaluate misinformation risk falling into data voids, or informational spaces in which there is corroborating evidence from low-quality sources. We also find consistent evidence that searching online to evaluate news increases belief in true news from low-quality sources, but inconsistent evidence that it increases belief in true news from mainstream sources. Our findings highlight the need for media literacy programmes to ground their recommendations in empirically tested strategies and for search engines to invest in solutions to the challenges identified here.

    Date Posted

    Dec 20, 2023

  • Working Paper

    Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scaling of Texts with Large Language Models

    Working Paper, October 2023

    View Article View abstract

    Existing text scaling methods often require a large corpus, struggle with short texts, or require labeled data. We develop a text scaling method that leverages the pattern recognition capabilities of generative large language models (LLMs). Specifically, we propose concept-guided chain-of-thought (CGCoT), which uses prompts designed to summarize ideas and identify target parties in texts to generate concept-specific breakdowns, in many ways similar to guidance for human coder content analysis. CGCoT effectively shifts pairwise text comparisons from a reasoning problem to a pattern recognition problem. We then pairwise compare concept-specific breakdowns using an LLM. We use the results of these pairwise comparisons to estimate a scale using the Bradley-Terry model. We use this approach to scale affective speech on Twitter. Our measures correlate more strongly with human judgments than alternative approaches like Wordfish. Besides a small set of pilot data to develop the CGCoT prompts, our measures require no additional labeled data and produce binary predictions comparable to a RoBERTa-Large model fine-tuned on thousands of human-labeled tweets. We demonstrate how combining substantive knowledge with LLMs can create state-of-the-art measures of abstract concepts.

    Date Posted

    Oct 18, 2023

  • Working Paper

    Large Language Models Can Be Used to Estimate the Latent Positions of Politicians

    Working Paper, September 2023

    View Article View abstract

    Existing approaches to estimating politicians' latent positions along specific dimensions often fail when relevant data is limited. We leverage the embedded knowledge in generative large language models (LLMs) to address this challenge and measure lawmakers' positions along specific political or policy dimensions. We prompt an instruction/dialogue-tuned LLM to pairwise compare lawmakers and then scale the resulting graph using the Bradley-Terry model. We estimate novel measures of U.S. senators' positions on liberal-conservative ideology, gun control, and abortion. Our liberal-conservative scale, used to validate LLM-driven scaling, strongly correlates with existing measures and offsets interpretive gaps, suggesting LLMs synthesize relevant data from internet and digitized media rather than memorizing existing measures. Our gun control and abortion measures -- the first of their kind -- differ from the liberal-conservative scale in face-valid ways and predict interest group ratings and legislator votes better than ideology alone. Our findings suggest LLMs hold promise for solving complex social science measurement problems.

  • Journal Article

    Like-Minded Sources On Facebook Are Prevalent But Not Polarizing

    • Brendan Nyhan, 
    • Jaime Settle, 
    • Emily Thorson, 
    • Magdalena Wojcieszak
    • Pablo Barberá
    • Annie Y. Chen, 
    • Hunt Alcott, 
    • Taylor Brown, 
    • Adriana Crespo-Tenorio, 
    • Drew Dimmery, 
    • Deen Freelon, 
    • Matthew Gentzkow, 
    • Sandra González-Bailón
    • Andrew M. Guess
    • Edward Kennedy, 
    • Young Mie Kim, 
    • David Lazer, 
    • Neil Malhotra, 
    • Devra Moehler, 
    • Jennifer Pan, 
    • Daniel Robert Thomas, 
    • Rebekah Tromble, 
    • Carlos Velasco Rivera, 
    • Arjun Wilkins, 
    • Beixian Xiong, 
    • Chad Kiewiet De Jong, 
    • Annie Franco, 
    • Winter Mason, 
    • Natalie Jomini Stroud, 
    • Joshua A. Tucker

    Nature, 2023

    View Article View abstract

    Many critics raise concerns about the prevalence of ‘echo chambers’ on social media and their potential role in increasing political polarization. However, the lack of available data and the challenges of conducting large-scale field experiments have made it difficult to assess the scope of the problem1,2. Here we present data from 2020 for the entire population of active adult Facebook users in the USA showing that content from ‘like-minded’ sources constitutes the majority of what people see on the platform, although political information and news represent only a small fraction of these exposures. To evaluate a potential response to concerns about the effects of echo chambers, we conducted a multi-wave field experiment on Facebook among 23,377 users for whom we reduced exposure to content from like-minded sources during the 2020 US presidential election by about one-third. We found that the intervention increased their exposure to content from cross-cutting sources and decreased exposure to uncivil language, but had no measurable effects on eight preregistered attitudinal measures such as affective polarization, ideological extremity, candidate evaluations and belief in false claims. These precisely estimated results suggest that although exposure to content from like-minded sources on social media is common, reducing its prevalence during the 2020 US presidential election did not correspondingly reduce polarization in beliefs or attitudes.

  • Journal Article

    How Do Social Media Feed Algorithms Affect Attitudes and Behavior in an Election Campaign?

    • Andrew M. Guess
    • Neil Malhotra, 
    • Jennifer Pan, 
    • Pablo Barberá
    • Hunt Alcott, 
    • Taylor Brown, 
    • Adriana Crespo-Tenorio, 
    • Drew Dimmery, 
    • Deen Freelon, 
    • Matthew Gentzkow, 
    • Sandra González-Bailón
    • Edward Kennedy, 
    • Young Mie Kim, 
    • David Lazer, 
    • Devra Moehler, 
    • Brendan Nyhan, 
    • Jaime Settle, 
    • Calos Velasco-Rivera, 
    • Daniel Robert Thomas, 
    • Emily Thorson, 
    • Rebekah Tromble, 
    • Beixian Xiong, 
    • Chad Kiewiet De Jong, 
    • Annie Franco, 
    • Winter Mason, 
    • Natalie Jomini Stroud, 
    • Joshua A. Tucker

    Science, 2023

    View Article View abstract

    We investigated the effects of Facebook’s and Instagram’s feed algorithms during the 2020 US election. We assigned a sample of consenting users to reverse-chronologically-ordered feeds instead of the default algorithms. Moving users out of algorithmic feeds substantially decreased the time they spent on the platforms and their activity. The chronological feed also affected exposure to content: The amount of political and untrustworthy content they saw increased on both platforms, the amount of content classified as uncivil or containing slur words they saw decreased on Facebook, and the amount of content from moderate friends and sources with ideologically mixed audiences they saw increased on Facebook. Despite these substantial changes in users’ on-platform experience, the chronological feed did not significantly alter levels of issue polarization, affective polarization, political knowledge, or other key attitudes during the 3-month study period.

  • Journal Article

    Reshares on Social Media Amplify Political News But Do Not Detectably Affect Beliefs or Opinions

    • Andrew M. Guess
    • Neil Malhotra, 
    • Jennifer Pan, 
    • Pablo Barberá
    • Hunt Alcott, 
    • Taylor Brown, 
    • Adriana Crespo-Tenorio, 
    • Drew Dimmery, 
    • Deen Freelon, 
    • Matthew Gentzkow, 
    • Sandra González-Bailón
    • Edward Kennedy, 
    • Young Mie Kim, 
    • David Lazer, 
    • Devra Moehler, 
    • Brendan Nyhan, 
    • Carlos Velasco Rivera, 
    • Jaime Settle, 
    • Daniel Robert Thomas, 
    • Emily Thorson, 
    • Rebekah Tromble, 
    • Arjun Wilkins, 
    • Magdalena Wojcieszak
    • Beixian Xiong, 
    • Chad Kiewiet De Jong, 
    • Annie Franco, 
    • Winter Mason, 
    • Natalie Jomini Stroud, 
    • Joshua A. Tucker

    Science, 2023

    View Article View abstract

    We studied the effects of exposure to reshared content on Facebook during the 2020 US election by assigning a random set of consenting, US-based users to feeds that did not contain any reshares over a 3-month period. We find that removing reshared content substantially decreases the amount of political news, including content from untrustworthy sources, to which users are exposed; decreases overall clicks and reactions; and reduces partisan news clicks. Further, we observe that removing reshared content produces clear decreases in news knowledge within the sample, although there is some uncertainty about how this would generalize to all users. Contrary to expectations, the treatment does not significantly affect political polarization or any measure of individual-level political attitudes.

  • Journal Article

    Asymmetric Ideological Segregation In Exposure To Political News on Facebook

    • Sandra González-Bailón
    • David Lazer, 
    • Pablo Barberá
    • Meiqing Zhang, 
    • Hunt Alcott, 
    • Taylor Brown, 
    • Adriana Crespo-Tenorio, 
    • Deen Freelon, 
    • Matthew Gentzkow, 
    • Andrew M. Guess
    • Shanto Iyengar, 
    • Young Mie Kim, 
    • Neil Malhotra, 
    • Devra Moehler, 
    • Brendan Nyhan, 
    • Jennifer Pan, 
    • Caros Velasco Rivera, 
    • Jaime Settle, 
    • Emily Thorson, 
    • Rebekah Tromble, 
    • Arjun Wilkins, 
    • Magdalena Wojcieszak
    • Chad Kiewiet De Jong, 
    • Annie Franco, 
    • Winter Mason, 
    • Joshua A. Tucker
    • Natalie Jomini Stroud

    Science, 2023

    View Article View abstract

    Does Facebook enable ideological segregation in political news consumption? We analyzed exposure to news during the US 2020 election using aggregated data for 208 million US Facebook users. We compared the inventory of all political news that users could have seen in their feeds with the information that they saw (after algorithmic curation) and the information with which they engaged. We show that (i) ideological segregation is high and increases as we shift from potential exposure to actual exposure to engagement; (ii) there is an asymmetry between conservative and liberal audiences, with a substantial corner of the news ecosystem consumed exclusively by conservatives; and (iii) most misinformation, as identified by Meta’s Third-Party Fact-Checking Program, exists within this homogeneously conservative corner, which has no equivalent on the liberal side. Sources favored by conservative audiences were more prevalent on Facebook’s news ecosystem than those favored by liberals.

  • Journal Article

    Measuring the Ideology of Audiences for Web Links and Domains Using Differentially Private Engagement Data

    Proceedings of the International AAAI Conference on Web and Social Media, 2023

    View Article View abstract

    Area of Study

    Date Posted

    Jun 02, 2023

  • Book

    Computational Social Science for Policy and Quality of Democracy: Public Opinion, Hate Speech, Misinformation, and Foreign Influence Campaigns

    Handbook of Computational Social Science for Policy, 2023

    View Book View abstract

    The intersection of social media and politics is yet another realm in which Computational Social Science has a paramount role to play. In this review, I examine the questions that computational social scientists are attempting to answer – as well as the tools and methods they are developing to do so – in three areas where the rise of social media has led to concerns about the quality of democracy in the digital information era: online hate; misinformation; and foreign influence campaigns. I begin, however, by considering a precursor of these topics – and also a potential hope for social media to be able to positively impact the quality of democracy – by exploring attempts to measure public opinion online using Computational Social Science methods. In all four areas, computational social scientists have made great strides in providing information to policy makers and the public regarding the evolution of these very complex phenomena but in all cases could do more to inform public policy with better access to the necessary data; this point is discussed in more detail in the conclusion of the review.

  • Journal Article

    Exposure to the Russian Internet Research Agency Foreign Influence Campaign on Twitter in the 2016 US Election and Its Relationship to Attitudes and Voting Behavior

    Nature Communications, 2023

    View Article View abstract

    There is widespread concern that foreign actors are using social media to interfere in elections worldwide. Yet data have been unavailable to investigate links between exposure to foreign influence campaigns and political behavior. Using longitudinal survey data from US respondents linked to their Twitter feeds, we quantify the relationship between exposure to the Russian foreign influence campaign and attitudes and voting behavior in the 2016 US election. We demonstrate, first, that exposure to Russian disinformation accounts was heavily concentrated: only 1% of users accounted for 70% of exposures. Second, exposure was concentrated among users who strongly identified as Republicans. Third, exposure to the Russian influence campaign was eclipsed by content from domestic news media and politicians. Finally, we find no evidence of a meaningful relationship between exposure to the Russian foreign influence campaign and changes in attitudes, polarization, or voting behavior. The results have implications for understanding the limits of election interference campaigns on social media.

    Date Posted

    Jan 09, 2023

  • Working Paper

    Social Media, Information, and Politics: Insights on Latinos in the U.S.

    Working Paper, November 2022

    View Article View abstract

    Social media is used by millions of Americans to acquire political news and information. Most of this research has focused on understanding the way social media consumption affects the political behavior and preferences of White Americans. Much less is known about Latinos’ political activity on social media, who are not only the largest racial/ethnic minority group in the U.S., but they also continue to exhibit diverse political preferences. Moreover, about 30% of Latinos rely primarily on Spanish-language news sources (Spanish-dominant Latinos) and another 30% are bilingual. Given that Spanish-language social media is not as heavily monitored for misinformation than its English-language counterparts (Valencia, 2021; Paul, 2021), Spanish-dominant Latinos who rely on social media for news may be more susceptible to political misinformation than those Latinos who are exposed to English-language social media. We address this contention by fielding an original study that sampled a large number of Latino and White respondents. Consistent with our expectations, Latinos who rely on Spanish-language social media are more likely to believe in election fraud than those who use both English and Spanish social media new sources. We also find that Latinos engage in more political activities on social media when compared to White Americans, particularly on their social media of choice, WhatsApp.

  • Journal Article

    Dictionary-Assisted Supervised Contrastive Learning

    Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2022

    View Article View abstract

    Text analysis in the social sciences often involves using specialized dictionaries to reason with abstract concepts, such as perceptions about the economy or abuse on social media. These dictionaries allow researchers to impart domain knowledge and note subtle usages of words relating to a concept(s) of interest. We introduce the dictionary-assisted supervised contrastive learning (DASCL) objective, allowing researchers to leverage specialized dictionaries when fine-tuning pretrained language models. The text is first keyword simplified: a common, fixed token replaces any word in the corpus that appears in the dictionary(ies) relevant to the concept of interest. During fine-tuning, a supervised contrastive objective draws closer the embeddings of the original and keyword-simplified texts of the same class while pushing further apart the embeddings of different classes. The keyword-simplified texts of the same class are more textually similar than their original text counterparts, which additionally draws the embeddings of the same class closer together. Combining DASCL and cross-entropy improves classification performance metrics in few-shot learning settings and social science applications compared to using cross-entropy alone and alternative contrastive and data augmentation methods.

    Area of Study

    Date Posted

    Oct 27, 2022

  • Journal Article

    Using Social Media Data to Reveal Patterns of Policy Engagement in State Legislatures

    State Politics & Policy Quarterly, 2022

    View Article View abstract

    State governments are tasked with making important policy decisions in the United States. How do state legislators use their public communications—particularly social media—to engage with policy debates? Due to previous data limitations, we lack systematic information about whether and how state legislators publicly discuss policy and how this behavior varies across contexts. Using Twitter data and state-of-the-art topic modeling techniques, we introduce a method to study state legislator policy priorities and apply the method to 15 US states in 2018. We show that we are able to accurately capture the policy issues discussed by state legislators with substantially more accuracy than existing methods. We then present initial findings that validate the method and speak to debates in the literature. The paper concludes by discussing promising avenues for future state politics research using this new approach.

    Date Posted

    Oct 18, 2022

  • Journal Article

    Most Users Do Not Follow Political Elites on Twitter; Those Who Do, Show Overwhelming Preferences for Ideological Congruity.

    Science Advances, 2022

    View Article View abstract

    We offer comprehensive evidence of preferences for ideological congruity when people engage with politicians, pundits, and news organizations on social media. Using four years of data (2016-2019) from a random sample of 1.5 million Twitter users, we examine three behaviors studied separately to date: (a) following of in-group vs. out-group elites, (b) sharing in-group vs. out-group information (retweeting), and (c) commenting on the shared information (quote tweeting). We find the majority of users (60%) do not follow any political elites. Those who do, follow in-group elite accounts at much higher rates than out-group accounts (90% vs. 10%), share information from in-group elites 13 times more frequently than from out-group elites, and often add negative comments to the shared out-group information. Conservatives are twice as likely as liberals to share in-group vs. out-group content. These patterns are robust, emerge across issues and political elites, and regardless of users' ideological extremity.

    Date Posted

    Sep 30, 2022

  • Journal Article

    Election Fraud, YouTube, and Public Perception of the Legitimacy of President Biden

    Journal of Online Trust and Safety, 2022

    View Article View abstract

    Skepticism about the outcome of the 2020 presidential election in the United States led to a historic attack on the Capitol on January 6th, 2021 and represents one of the greatest challenges to America's democratic institutions in over a century. Narratives of fraud and conspiracy theories proliferated over the fall of 2020, finding fertile ground across online social networks, although little is know about the extent and drivers of this spread. In this article, we show that users who were more skeptical of the election's legitimacy were more likely to be recommended content that featured narratives about the legitimacy of the election. Our findings underscore the tension between an "effective" recommendation system that provides users with the content they want, and a dangerous mechanism by which misinformation, disinformation, and conspiracies can find their way to those most likely to believe them.

    Date Posted

    Sep 01, 2022

  • Journal Article

    What We Learned About The Gateway Pundit from its Own Web Traffic Data

    Workshop Proceedings of the 16th International AAAI Conference on Web and Social Media, 2022

    View Article View abstract

    To mitigate the spread of false news, researchers need to understand who visits low-quality news sites, what brings people to those sites, and what content they prefer to consume. Due to challenges in observing most direct website traffic, existing research primarily relies on alternative data sources, such as engagement signals from social media posts. However, such signals are at best only proxies for actual website visits. During an audit of far-right news websites, we discovered that The Gateway Pundit (TGP) has made its web traffic data publicly available, giving us a rare opportunity to understand what news pages people actually visit. We collected 68 million web traffic visits to the site over a one-month period and analyzed how people consume news via multiple features. Our referral analysis shows that search engines and social media platforms are the main drivers of traffic; our geo-location analysis reveals that TGP is more popular in counties where more people voted for Trump in 2020. In terms of content, topics related to 2020 US presidential election and 2021 US capital riot have the highest average number of visits. We also use these data to quantify to what degree social media engagement signals correlate with actual web visit counts. To do so, we collect Facebook and Twitter posts with URLs from TGP during the same time period. We show that all engagement signals positively correlate with web visit counts, but with varying correlation strengths. For example, total interaction on Facebook correlates better than Twitter retweet count. Our insights can also help researchers choose the right metrics when they measure the impact of news URLs on social media.

    Date Posted

    Jun 01, 2022

  • Working Paper

    Echo Chambers, Rabbit Holes, and Algorithmic Bias: How YouTube Recommends Content to Real Users

    Working Paper, May 2022

    View Article View abstract

    To what extent does the YouTube recommendation algorithm push users into echo chambers, ideologically biased content, or rabbit holes? Despite growing popular concern, recent work suggests that the recommendation algorithm is not pushing users into these echo chambers. However, existing research relies heavily on the use of anonymous data collection that does not account for the personalized nature of the recommendation algorithm. We asked a sample of real users to install a browser extension that downloaded the list of videos they were recommended. We instructed these users to start on an assigned video and then click through 20 sets of recommendations, capturing what they were being shown in real time as they used the platform logged into their real accounts. Using a novel method to estimate the ideology of a YouTube video, we demonstrate that the YouTube recommendation algorithm does, in fact, push real users into mild ideological echo chambers where, by the end of the data collection task, liberals and conservatives received different distributions of recommendations from each other, though this difference is small. While we find evidence that this difference increases the longer the user followed the recommendation algorithm, we do not find evidence that many go down `rabbit holes' that lead them to ideologically extreme content. Finally, we find that YouTube pushes all users, regardless of ideology, towards moderately conservative and an increasingly narrow range of ideological content the longer they follow YouTube's recommendations.

    Date Posted

    May 11, 2022

  • Journal Article

    News Credibility Labels Have Limited Average Effects on News Diet Quality and Fail to Reduce Misperceptions

    Science Advances, 2022

    View Article View abstract

    As the primary arena for viral misinformation shifts toward transnational threats, the search continues for scalable countermeasures compatible with principles of transparency and free expression. We conducted a randomized field experiment evaluating the impact of source credibility labels embedded in users’ social feeds and search results pages. By combining representative surveys (n = 3337) and digital trace data (n = 968) from a subset of respondents, we provide a rare ecologically valid test of such an intervention on both attitudes and behavior. On average across the sample, we are unable to detect changes in real-world consumption of news from low-quality sources after 3 weeks. We can also rule out small effects on perceived accuracy of popular misinformation spread about the Black Lives Matter movement and coronavirus disease 2019. However, we present suggestive evidence of a substantively meaningful increase in news diet quality among the heaviest consumers of misinformation. We discuss the implications of our findings for scholars and practitioners.

    Date Posted

    May 06, 2022

  • Working Paper

    To Moderate, Or Not to Moderate: Strategic Domain Sharing by Congressional Campaigns

    Working Paper, April 2022

    View Article View abstract

    We test whether candidates move to the extremes before a primary but then return to the center for the general election to appeal to the different preferences of each electorate. Incumbents are now more vulnerable to primary challenges than ever as social media offers a viable pathway for fundraising and messaging to challengers, while homogeneity of districts has reduced general election competitiveness. To assess candidates' ideological trajectories, we estimate the revealed ideology of 2020 congressional candidates (incumbents, their primary challengers, and open seat candidates) before and after their primaries, using a homophily-based measure of domains shared on Twitter. This method provides temporally granular data to observe changes in communication within a single election campaign cycle. We find that incumbents did move towards extremes for their primaries and back towards the center for the general election, but only when threatened by a well-funded primary challenge, though non-incumbents did not.

    Date Posted

    Apr 05, 2022

  • Journal Article

    What’s Not to Like? Facebook Page Likes Reveal Limited Polarization in Lifestyle Preferences

    Political Communication, 2021

    View Article View abstract

    Increasing levels of political animosity in the United States invite speculation about whether polarization extends to aspects of daily life. However, empirical study about the relationship between political ideologies and lifestyle choices is limited by a lack of comprehensive data. In this research, we combine survey and Facebook Page “likes” data from more than 1,200 respondents to investigate the extent of polarization in lifestyle domains. Our results indicate that polarization is present in page categories that are somewhat related to politics – such as opinion leaders, partisan news sources, and topics related to identity and religion – but, perhaps surprisingly, it is mostly not evident in other domains, including sports, food, and music. On the individual level, we find that people who are higher in political news interest and have stronger ideological predispositions have a greater tendency to “like” ideologically homogeneous pages across categories. Our evidence, drawn from rare digital trace data covering more than 5,000 pages, adds nuance to the narrative of widespread polarization across lifestyle sectors and it suggests domains in which cross-cutting preferences are still observed in American life.

    Area of Study

    Date Posted

    Nov 25, 2021