Academic Research

CSMaP faculty, postdoctoral fellows, and students publish rigorous, peer-reviewed research in top academic journals and post working papers sharing ongoing work.

Search or Filter

  • Working Paper

    Large Language Models Can Be Used to Estimate the Latent Positions of Politicians

    Working Paper, September 2023

    View Article View abstract

    Existing approaches to estimating politicians' latent positions along specific dimensions often fail when relevant data is limited. We leverage the embedded knowledge in generative large language models (LLMs) to address this challenge and measure lawmakers' positions along specific political or policy dimensions. We prompt an instruction/dialogue-tuned LLM to pairwise compare lawmakers and then scale the resulting graph using the Bradley-Terry model. We estimate novel measures of U.S. senators' positions on liberal-conservative ideology, gun control, and abortion. Our liberal-conservative scale, used to validate LLM-driven scaling, strongly correlates with existing measures and offsets interpretive gaps, suggesting LLMs synthesize relevant data from internet and digitized media rather than memorizing existing measures. Our gun control and abortion measures -- the first of their kind -- differ from the liberal-conservative scale in face-valid ways and predict interest group ratings and legislator votes better than ideology alone. Our findings suggest LLMs hold promise for solving complex social science measurement problems.

  • Journal Article

    Like-Minded Sources On Facebook Are Prevalent But Not Polarizing

    • Brendan Nyhan, 
    • Jaime Settle, 
    • Emily Thorson, 
    • Magdalena Wojcieszak
    • Pablo Barberá
    • Annie Y. Chen, 
    • Hunt Alcott, 
    • Taylor Brown, 
    • Adriana Crespo-Tenorio, 
    • Drew Dimmery, 
    • Deen Freelon, 
    • Matthew Gentzkow, 
    • Sandra González-Bailón
    • Andrew M. Guess
    • Edward Kennedy, 
    • Young Mie Kim, 
    • David Lazer, 
    • Neil Malhotra, 
    • Devra Moehler, 
    • Jennifer Pan, 
    • Daniel Robert Thomas, 
    • Rebekah Tromble, 
    • Carlos Velasco Rivera, 
    • Arjun Wilkins, 
    • Beixian Xiong, 
    • Chad Kiewiet De Jong, 
    • Annie Franco, 
    • Winter Mason, 
    • Natalie Jomini Stroud, 
    • Joshua A. Tucker

    Nature, 2023

    View Article View abstract

    Many critics raise concerns about the prevalence of ‘echo chambers’ on social media and their potential role in increasing political polarization. However, the lack of available data and the challenges of conducting large-scale field experiments have made it difficult to assess the scope of the problem1,2. Here we present data from 2020 for the entire population of active adult Facebook users in the USA showing that content from ‘like-minded’ sources constitutes the majority of what people see on the platform, although political information and news represent only a small fraction of these exposures. To evaluate a potential response to concerns about the effects of echo chambers, we conducted a multi-wave field experiment on Facebook among 23,377 users for whom we reduced exposure to content from like-minded sources during the 2020 US presidential election by about one-third. We found that the intervention increased their exposure to content from cross-cutting sources and decreased exposure to uncivil language, but had no measurable effects on eight preregistered attitudinal measures such as affective polarization, ideological extremity, candidate evaluations and belief in false claims. These precisely estimated results suggest that although exposure to content from like-minded sources on social media is common, reducing its prevalence during the 2020 US presidential election did not correspondingly reduce polarization in beliefs or attitudes.

  • Journal Article

    How Do Social Media Feed Algorithms Affect Attitudes and Behavior in an Election Campaign?

    • Andrew M. Guess
    • Neil Malhotra, 
    • Jennifer Pan, 
    • Pablo Barberá
    • Hunt Alcott, 
    • Taylor Brown, 
    • Adriana Crespo-Tenorio, 
    • Drew Dimmery, 
    • Deen Freelon, 
    • Matthew Gentzkow, 
    • Sandra González-Bailón
    • Edward Kennedy, 
    • Young Mie Kim, 
    • David Lazer, 
    • Devra Moehler, 
    • Brendan Nyhan, 
    • Jaime Settle, 
    • Calos Velasco-Rivera, 
    • Daniel Robert Thomas, 
    • Emily Thorson, 
    • Rebekah Tromble, 
    • Beixian Xiong, 
    • Chad Kiewiet De Jong, 
    • Annie Franco, 
    • Winter Mason, 
    • Natalie Jomini Stroud, 
    • Joshua A. Tucker

    Science, 2023

    View Article View abstract

    We investigated the effects of Facebook’s and Instagram’s feed algorithms during the 2020 US election. We assigned a sample of consenting users to reverse-chronologically-ordered feeds instead of the default algorithms. Moving users out of algorithmic feeds substantially decreased the time they spent on the platforms and their activity. The chronological feed also affected exposure to content: The amount of political and untrustworthy content they saw increased on both platforms, the amount of content classified as uncivil or containing slur words they saw decreased on Facebook, and the amount of content from moderate friends and sources with ideologically mixed audiences they saw increased on Facebook. Despite these substantial changes in users’ on-platform experience, the chronological feed did not significantly alter levels of issue polarization, affective polarization, political knowledge, or other key attitudes during the 3-month study period.

  • Journal Article

    Reshares on Social Media Amplify Political News But Do Not Detectably Affect Beliefs or Opinions

    • Andrew M. Guess
    • Neil Malhotra, 
    • Jennifer Pan, 
    • Pablo Barberá
    • Hunt Alcott, 
    • Taylor Brown, 
    • Adriana Crespo-Tenorio, 
    • Drew Dimmery, 
    • Deen Freelon, 
    • Matthew Gentzkow, 
    • Sandra González-Bailón
    • Edward Kennedy, 
    • Young Mie Kim, 
    • David Lazer, 
    • Devra Moehler, 
    • Brendan Nyhan, 
    • Carlos Velasco Rivera, 
    • Jaime Settle, 
    • Daniel Robert Thomas, 
    • Emily Thorson, 
    • Rebekah Tromble, 
    • Arjun Wilkins, 
    • Magdalena Wojcieszak
    • Beixian Xiong, 
    • Chad Kiewiet De Jong, 
    • Annie Franco, 
    • Winter Mason, 
    • Natalie Jomini Stroud, 
    • Joshua A. Tucker

    Science, 2023

    View Article View abstract

    We studied the effects of exposure to reshared content on Facebook during the 2020 US election by assigning a random set of consenting, US-based users to feeds that did not contain any reshares over a 3-month period. We find that removing reshared content substantially decreases the amount of political news, including content from untrustworthy sources, to which users are exposed; decreases overall clicks and reactions; and reduces partisan news clicks. Further, we observe that removing reshared content produces clear decreases in news knowledge within the sample, although there is some uncertainty about how this would generalize to all users. Contrary to expectations, the treatment does not significantly affect political polarization or any measure of individual-level political attitudes.

  • Journal Article

    Asymmetric Ideological Segregation In Exposure To Political News on Facebook

    • Sandra González-Bailón
    • David Lazer, 
    • Pablo Barberá
    • Meiqing Zhang, 
    • Hunt Alcott, 
    • Taylor Brown, 
    • Adriana Crespo-Tenorio, 
    • Deen Freelon, 
    • Matthew Gentzkow, 
    • Andrew M. Guess
    • Shanto Iyengar, 
    • Young Mie Kim, 
    • Neil Malhotra, 
    • Devra Moehler, 
    • Brendan Nyhan, 
    • Jennifer Pan, 
    • Caros Velasco Rivera, 
    • Jaime Settle, 
    • Emily Thorson, 
    • Rebekah Tromble, 
    • Arjun Wilkins, 
    • Magdalena Wojcieszak
    • Chad Kiewiet De Jong, 
    • Annie Franco, 
    • Winter Mason, 
    • Joshua A. Tucker
    • Natalie Jomini Stroud

    Science, 2023

    View Article View abstract

    Does Facebook enable ideological segregation in political news consumption? We analyzed exposure to news during the US 2020 election using aggregated data for 208 million US Facebook users. We compared the inventory of all political news that users could have seen in their feeds with the information that they saw (after algorithmic curation) and the information with which they engaged. We show that (i) ideological segregation is high and increases as we shift from potential exposure to actual exposure to engagement; (ii) there is an asymmetry between conservative and liberal audiences, with a substantial corner of the news ecosystem consumed exclusively by conservatives; and (iii) most misinformation, as identified by Meta’s Third-Party Fact-Checking Program, exists within this homogeneously conservative corner, which has no equivalent on the liberal side. Sources favored by conservative audiences were more prevalent on Facebook’s news ecosystem than those favored by liberals.

  • Book

    Computational Social Science for Policy and Quality of Democracy: Public Opinion, Hate Speech, Misinformation, and Foreign Influence Campaigns

    Handbook of Computational Social Science for Policy, 2023

    View Book View abstract

    The intersection of social media and politics is yet another realm in which Computational Social Science has a paramount role to play. In this review, I examine the questions that computational social scientists are attempting to answer – as well as the tools and methods they are developing to do so – in three areas where the rise of social media has led to concerns about the quality of democracy in the digital information era: online hate; misinformation; and foreign influence campaigns. I begin, however, by considering a precursor of these topics – and also a potential hope for social media to be able to positively impact the quality of democracy – by exploring attempts to measure public opinion online using Computational Social Science methods. In all four areas, computational social scientists have made great strides in providing information to policy makers and the public regarding the evolution of these very complex phenomena but in all cases could do more to inform public policy with better access to the necessary data; this point is discussed in more detail in the conclusion of the review.

  • Working Paper

    Social Media, Information, and Politics: Insights on Latinos in the U.S.

    Working Paper, November 2022

    View Article View abstract

    Social media is used by millions of Americans to acquire political news and information. Most of this research has focused on understanding the way social media consumption affects the political behavior and preferences of White Americans. Much less is known about Latinos’ political activity on social media, who are not only the largest racial/ethnic minority group in the U.S., but they also continue to exhibit diverse political preferences. Moreover, about 30% of Latinos rely primarily on Spanish-language news sources (Spanish-dominant Latinos) and another 30% are bilingual. Given that Spanish-language social media is not as heavily monitored for misinformation than its English-language counterparts (Valencia, 2021; Paul, 2021), Spanish-dominant Latinos who rely on social media for news may be more susceptible to political misinformation than those Latinos who are exposed to English-language social media. We address this contention by fielding an original study that sampled a large number of Latino and White respondents. Consistent with our expectations, Latinos who rely on Spanish-language social media are more likely to believe in election fraud than those who use both English and Spanish social media new sources. We also find that Latinos engage in more political activities on social media when compared to White Americans, particularly on their social media of choice, WhatsApp.

  • Journal Article

    Using Social Media Data to Reveal Patterns of Policy Engagement in State Legislatures

    State Politics & Policy Quarterly, 2022

    View Article View abstract

    State governments are tasked with making important policy decisions in the United States. How do state legislators use their public communications—particularly social media—to engage with policy debates? Due to previous data limitations, we lack systematic information about whether and how state legislators publicly discuss policy and how this behavior varies across contexts. Using Twitter data and state-of-the-art topic modeling techniques, we introduce a method to study state legislator policy priorities and apply the method to 15 US states in 2018. We show that we are able to accurately capture the policy issues discussed by state legislators with substantially more accuracy than existing methods. We then present initial findings that validate the method and speak to debates in the literature. The paper concludes by discussing promising avenues for future state politics research using this new approach.

    Date Posted

    Oct 18, 2022

  • Journal Article

    Most Users Do Not Follow Political Elites on Twitter; Those Who Do, Show Overwhelming Preferences for Ideological Congruity.

    Science Advances, 2022

    View Article View abstract

    We offer comprehensive evidence of preferences for ideological congruity when people engage with politicians, pundits, and news organizations on social media. Using four years of data (2016-2019) from a random sample of 1.5 million Twitter users, we examine three behaviors studied separately to date: (a) following of in-group vs. out-group elites, (b) sharing in-group vs. out-group information (retweeting), and (c) commenting on the shared information (quote tweeting). We find the majority of users (60%) do not follow any political elites. Those who do, follow in-group elite accounts at much higher rates than out-group accounts (90% vs. 10%), share information from in-group elites 13 times more frequently than from out-group elites, and often add negative comments to the shared out-group information. Conservatives are twice as likely as liberals to share in-group vs. out-group content. These patterns are robust, emerge across issues and political elites, and regardless of users' ideological extremity.

    Date Posted

    Sep 30, 2022

  • Working Paper

    To Moderate, Or Not to Moderate: Strategic Domain Sharing by Congressional Campaigns

    Working Paper, April 2022

    View Article View abstract

    We test whether candidates move to the extremes before a primary but then return to the center for the general election to appeal to the different preferences of each electorate. Incumbents are now more vulnerable to primary challenges than ever as social media offers a viable pathway for fundraising and messaging to challengers, while homogeneity of districts has reduced general election competitiveness. To assess candidates' ideological trajectories, we estimate the revealed ideology of 2020 congressional candidates (incumbents, their primary challengers, and open seat candidates) before and after their primaries, using a homophily-based measure of domains shared on Twitter. This method provides temporally granular data to observe changes in communication within a single election campaign cycle. We find that incumbents did move towards extremes for their primaries and back towards the center for the general election, but only when threatened by a well-funded primary challenge, though non-incumbents did not.

    Date Posted

    Apr 05, 2022

  • Journal Article

    Short of Suspension: How Suspension Warnings Can Reduce Hate Speech on Twitter

    Perspectives on Politics, 2023

    View Article View abstract

    Debates around the effectiveness of high-profile Twitter account suspensions and similar bans on abusive users across social media platforms abound. Yet we know little about the effectiveness of warning a user about the possibility of suspending their account as opposed to outright suspensions in reducing hate speech. With a pre-registered experiment, we provide causal evidence that a warning message can reduce the use of hateful language on Twitter, at least in the short term. We design our messages based on the literature on deterrence, and test versions that emphasize the legitimacy of the sender, the credibility of the message, and the costliness of being suspended. We find that the act of warning a user of the potential consequences of their behavior can significantly reduce their hateful language for one week. We also find that warning messages that aim to appear legitimate in the eyes of the target user seem to be the most effective. In light of these findings, we consider the policy implications of platforms adopting a more aggressive approach to warning users that their accounts may be suspended as a tool for reducing hateful speech online.

    Date Posted

    Nov 22, 2021

  • Journal Article

    Twitter Flagged Donald Trump’s Tweets with Election Misinformation: They Continued to Spread Both On and Off the Platform

    Harvard Kennedy School (HKS) Misinformation Review, 2021

    View Article View abstract

    We analyze the spread of Donald Trump’s tweets that were flagged by Twitter using two intervention strategies—attaching a warning label and blocking engagement with the tweet entirely. We find that while blocking engagement on certain tweets limited their diffusion, messages we examined with warning labels spread further on Twitter than those without labels. Additionally, the messages that had been blocked on Twitter remained popular on Facebook, Instagram, and Reddit, being posted more often and garnering more visibility than messages that had either been labeled by Twitter or received no intervention at all. Taken together, our results emphasize the importance of considering content moderation at the ecosystem level.

  • Journal Article

    Tweeting Beyond Tahrir: Ideological Diversity and Political Intolerance in Egyptian Twitter Networks

    World Politics, 2021

    View Article View abstract

    Do online social networks affect political tolerance in the highly polarized climate of postcoup Egypt? Taking advantage of the real-time networked structure of Twitter data, the authors find that not only is greater network diversity associated with lower levels of intolerance, but also that longer exposure to a diverse network is linked to less expression of intolerance over time. The authors find that this relationship persists in both elite and non-elite diverse networks. Exploring the mechanisms by which network diversity might affect tolerance, the authors offer suggestive evidence that social norms in online networks may shape individuals’ propensity to publicly express intolerant attitudes. The findings contribute to the political tolerance literature and enrich the ongoing debate over the relationship between online echo chambers and political attitudes and behavior by providing new insights from a repressive authoritarian context.

  • Journal Article

    Trumping Hate on Twitter? Online Hate Speech in the 2016 U.S. Election Campaign and its Aftermath.

    Quarterly Journal of Political Science, 2021

    View Article View abstract

    To what extent did online hate speech and white nationalist rhetoric on Twitter increase over the course of Donald Trump's 2016 presidential election campaign and its immediate aftermath? The prevailing narrative suggests that Trump's political rise — and his unexpected victory — lent legitimacy to and popularized bigoted rhetoric that was once relegated to the dark corners of the Internet. However, our analysis of over 750 million tweets related to the election, in addition to almost 400 million tweets from a random sample of American Twitter users, provides systematic evidence that hate speech did not increase on Twitter over this period. Using both machine-learning-augmented dictionary-based methods and a novel classification approach leveraging data from Reddit communities associated with the alt-right movement, we observe no persistent increase in hate speech or white nationalist language either over the course of the campaign or in the six months following Trump's election. While key campaign events and policy announcements produced brief spikes in hateful language, these bursts quickly dissipated. Overall we find no empirical support for the proposition that Trump's divisive campaign or election increased hate speech on Twitter.

    Date Posted

    Jan 11, 2021

  • Working Paper

    News Sharing on Social Media: Mapping the Ideology of News Media Content, Citizens, and Politicians

    Working Paper, November 2020

    View Article View abstract

    This article examines the news sharing behavior of politicians and ordinary users by mapping the ideological sharing space of political information on social media. As data, we use the near-universal currency of online political information exchange: URLs (i.e. web links). We introduce a methodological approach (and statistical software) that unifies the measurement of political ideology online, using social media sharing data to jointly estimate the ideology of: (1) politicians; (2) social media users, and (3) the news sources that they share online. Second, we validate the measure by comparing it to well-known measures of roll call voting behavior for members of congress. Third, we show empirically that legislators who represent less competitive districts are more likely to share politically polarizing news than legislators with similar voting records in more competitive districts. Finally, we demonstrate that it is nevertheless not politicians, but ordinary users who share the most ideologically extreme content and contribute most to the polarized online news-sharing ecosystem. Our approach opens up many avenues for research into the communication strategies of elites, citizens, and other actors who seek to influence political behavior and sway public opinion by sharing political information online.

  • Book
  • Journal Article

    Don’t Republicans Tweet Too? Using Twitter to Assess the Consequences of Political Endorsements by Celebrities

    Perspectives on Politics, 2020

    View Article View abstract

    Michael Jordan supposedly justified his decision to stay out of politics by noting that Republicans buy sneakers too. In the social media era, the name of the game for celebrities is engagement with fans. So why then do celebrities risk talking about politics on social media, which is likely to antagonize a portion of their fan base? With this question in mind, we analyze approximately 220,000 tweets from 83 celebrities who chose to endorse a presidential candidate in the 2016 U.S. presidential election campaign to assess whether there is a cost — defined in terms of engagement on Twitter — for celebrities who discuss presidential candidates. We also examine whether celebrities behave similarly to other campaign surrogates in being more likely to take on the “attack dog” role by going negative more often than going positive. More specifically, we document how often celebrities of distinct political preferences tweet about Donald Trump, Bernie Sanders, and Hillary Clinton, and we show that followers of opinionated celebrities do not withhold engagement when entertainers become politically mobilized and do indeed often go negative. Interestingly, in some cases political content from celebrities actually turns out to be more popular than typical lifestyle tweets.


    Date Posted

    Sep 06, 2019

  • Journal Article

    Who Leads? Who Follows? Measuring Issue Attention and Agenda Setting by Legislators and the Mass Public Using Social Media Data

    American Political Science Review, 2019

    View Article View abstract

    Are legislators responsive to the priorities of the public? Research demonstrates a strong correspondence between the issues about which the public cares and the issues addressed by politicians, but conclusive evidence about who leads whom in setting the political agenda has yet to be uncovered. We answer this question with fine-grained temporal analyses of Twitter messages by legislators and the public during the 113th U.S. Congress. After employing an unsupervised method that classifies tweets sent by legislators and citizens into topics, we use vector autoregression models to explore whose priorities more strongly predict the relationship between citizens and politicians. We find that legislators are more likely to follow, than to lead, discussion of public issues, results that hold even after controlling for the agenda-setting effects of the media. We also find, however, that legislators are more likely to be responsive to their supporters than to the general public.

    Date Posted

    Jul 12, 2019

  • Journal Article

    Social Networks and Protest Participation: Evidence from 130 Million Twitter Users

    American Journal of Political Science, 2019

    View Article View abstract

    Pinning down the role of social ties in the decision to protest has been notoriously elusive largely due to data limitations. Social media and their global use by protesters offer an unprecedented opportunity to observe real-time social ties and online behavior, though often without an attendant measure of real-world behavior. We collect data on Twitter activity during the 2015 Charlie Hebdo protest in Paris, which, unusually, record real-world protest attendance and network structure measured beyond egocentric networks. We devise a test of social theories of protest that hold that participation depends on exposure to others' intentions and network position determines exposure. Our findings are strongly consistent with these theories, showing that protesters are significantly more connected to one another via direct, indirect, triadic, and reciprocated ties than comparable nonprotesters. These results offer the first large-scale empirical support for the claim that social network structure has consequences for protest participation.

    Date Posted

    Jul 01, 2019

    Tags

  • Journal Article

    Digital Dissent: An Analysis of the Motivational Contents of Tweets From an Occupy Wall Street Demonstration

    Motivation Science, 2019

    View Article View abstract

    Social scientific models of protest activity emphasize instrumental motives associated with rational self-interest and beliefs about group efficacy and symbolic motives associated with social identification and anger at perceived injustice. Ideological processes are typically neglected, despite the fact that protest movements occur in a sociopolitical context in which some people are motivated to maintain the status quo, whereas others are motivated to challenge it. To investigate the role of ideology and other social psychological processes in protest participation, we used manual and machine-learning methods to analyze the contents of 23,810 tweets sent on the day of the May Day 2012 Occupy Wall Street demonstration along with an additional 664,937 tweets (sent by 8,244 unique users) during the 2-week lead-up to the demonstration. Results revealed that social identification and liberal ideology were significant independent predictors of protest participation. The effect of social identification was mediated by the expression of collective efficacy, justice concerns, ideological themes, and positive emotion. The effect of liberalism was mediated by the expression of ideological themes, but conservatives were more likely to express ideological backlash against Occupy Wall Street than liberals were to express ideological support for the movement or demonstration. The expression of self-interest and anger was either negatively related or unrelated to protest participation. This work illustrates the promise (and challenge) of using automated methods to analyze new, ecologically valid data sources for studying protest activity and its motivational underpinnings — thereby informing strategic campaigns that employ collective action tactics. 

    Date Posted

    Feb 27, 2019

  • Journal Article

    Elites Tweet to Get Feet Off the Streets: Measuring Regime Social Media Strategies During Protest

    Political Science Research and Methods, 2019

    View Article View abstract

    As non-democratic regimes have adapted to the proliferation of social media, they have begun actively engaging with Twitter to enhance regime resilience. Using data taken from the Twitter accounts of Venezuelan legislators during the 2014 anti-Maduro protests in Venezuela, we fit a topic model on the text of the tweets and analyze patterns in hashtag use by the two coalitions. We argue that the regime’s best strategy in the face of an existential threat like the narrative developed by La Salida and promoted on Twitter was to advance many competing narratives that addressed issues unrelated to the opposition’s criticism. Our results show that the two coalitions pursued different rhetorical strategies in keeping with our predictions about managing the conflict advanced by the protesters. This article extends the literature on social media use during protests by focusing on active engagement with social media on the part of the regime. This approach corroborates and expands on recent research on inferring regime strategies from propaganda and censorship.

    Date Posted

    Mar 21, 2018

    Tags

  • Journal Article

    How Social Media Facilitates Political Protest: Information, Motivation, and Social Networks

    Advances in Political Psychology, 2018

    View Article View abstract

    It is often claimed that social media platforms such as Facebook and Twitter are profoundly shaping political participation, especially when it comes to protest behavior. Whether or not this is the case, the analysis of “Big Data” generated by social media usage offers unprecedented opportunities to observe complex, dynamic effects associated with large-scale collective action and social movements. In this article, we summarize evidence from studies of protest movements in the United States, Spain, Turkey, and Ukraine demonstrating that: (1) Social media platforms facilitate the exchange of information that is vital to the coordination of protest activities, such as news about transportation, turnout, police presence, violence, medical services, and legal support; (2) in addition, social media platforms facilitate the exchange of emotional and motivational contents in support of and opposition to protest activity, including messages emphasizing anger, social identification, group efficacy, and concerns about fairness, justice, and deprivation as well as explicitly ideological themes; and (3) structural characteristics of online social networks, which may differ as a function of political ideology, have important implications for information exposure and the success or failure of organizational efforts. Next, we issue a brief call for future research on a topic that is understudied but fundamental to appreciating the role of social media in facilitating political participation, namely friendship. In closing, we liken the situation confronted by researchers who are harvesting vast quantities of social media data to that of systems biologists in the early days of genome sequencing.

    Date Posted

    Feb 13, 2018

  • Book

    Twitter Wars: Sunni-Shia Conflict and Cooperation in the Digital Age

    Beyond Sunni and Shia: The Roots of Sectarianism in a Changing Middle East, 2018

    View Book

    Date Posted

    Feb 01, 2018

  • Journal Article

    Moral Discourse in the Twitterverse: Effects of Ideology and Political Sophistication on Language Use Among U.S. Citizens and Members of Congress

    Journal of Language and Politics, 2018

    View Article View abstract

    We analyzed Twitter language to explore hypotheses derived from moral foundations theory, which suggests that liberals and conservatives prioritize different values. In Study 1, we captured 11 million tweets from nearly 25,000 U.S. residents and observed that liberals expressed fairness concerns more often than conservatives, whereas conservatives were more likely to express concerns about group loyalty, authority, and purity. Increasing political sophistication exacerbated ideological differences in authority and group loyalty. At low levels of sophistication, liberals used more harm language, but at high levels of sophistication conservatives referenced harm more often. In Study 2, we analyzed 59,000 tweets from 388 members of the U.S. Congress. Liberal legislators used more fairness- and harm-related words, whereas conservative legislators used more authority-related words. Unexpectedly, liberal legislators used more language pertaining to group loyalty and purity. Follow-up analyses suggest that liberals and conservatives in Congress use similar words to emphasize different policy priorities.

  • Journal Article

    The Islamic State’s Information Warfare: Measuring the Success of ISIS’s Online Strategy

    Journal of Language and Politics, 2018

    View Article View abstract

    How successful is the Islamic State’s online strategy? To what extent does the organization achieve its goals of attracting a global audience, broadcasting its military successes, and marketing the Caliphate? Using Twitter and YouTube search data, we assess how suspected ISIS accounts, sympathizers, and opponents behave across two social media platforms, offering key insights into the successes and limitations of ISIS’ information warfare strategy. Analyzing the tweet content and metadata from 16,364 suspected ISIS accounts, we find that a core network of ISIS Twitter users are producing linguistically diverse narratives, touting battlefield victories and depicting utopian life in the Caliphate. Furthermore, a dataset of over 70 million tweets, as well as analysis of YouTube search data, indicates that although pro-ISIS content spreads globally and remains on message, it is far less prolific than anti-ISIS content. However, this anti-ISIS content is not necessarily anti-extremist or aligned with Western policy goals.

    Date Posted

    Oct 18, 2017

    Tags

  • 1
  • 2